Masuda R. et al. Exploration of Human Serum Lipoprotein Supramolecular Phospholipids Using Statistical Heterospectroscopy in n-Dimensions (SHY-n): Identification of Potential Cardiovascular Risk Biomarkers Related to SARS-CoV-2 Infection, Anal. Chem. (2022). https://doi.org/10.1021/acs.analchem.1c05389.

Nitschke, P. et al. J-Edited DIffusional Proton Nuclear Magnetic Resonance Spectroscopic Measurement of Glycoprotein and Supramolecular Phospholipid Biomarkers of Inflammation in Human Serum. Analytical Chemistry (2022) 94(2), 1333–1341. https://doi.org/10.1021/acs.analchem.1c04576

Nicholson, J. K. Molecular Phenomic Approaches to Deconvolving the Systemic Effects of SARS-CoV-2 Infection and Post-acute COVID-19 Syndrome, Phenomics. (2021). https://doi.org/10.1007/s43657-021-00020-3.

Gray, N. et al.  Diagnostic Potential of the Plasma Lipidome in Infectious Disease: Application to Acute SARS-CoV-2 Infection, Metabolites. 11 (2021) 467. https://dx.doi.org/10.3390%2Fmetabo11070467.

Masuda, R. et al. Integrative Modeling of Plasma Metabolic and Lipoprotein Biomarkers of SARS-CoV-2 Infection in Spanish and Australian COVID-19 Patient Cohorts, J. Proteome Res. (2021). https://doi.org/10.1021/acs.jproteome.1c00458.

Holmes E. et al. Incomplete Systemic Recovery and Metabolic Phenoreversion in Post-Acute-Phase Nonhospitalized COVID-19 Patients: Implications for Assessment of Post-Acute COVID-19 Syndrome, J. Proteome Res. (2021). https://doi.org/10.1021/acs.jproteome.1c00224.

Lawler, NG. et al Systemic Perturbations in Amine and Kynurenine Metabolism Associated with Acute SARS-CoV-2 Infection and Inflammatory Cytokine Responses, J. Proteome Res. (2021). https://doi.org/10.1021/acs.jproteome.1c00052.

Lodge S, et al. Diffusion and Relaxation Edited Proton NMR Spectroscopy of Plasma Reveals a High-Fidelity Supramolecular Biomarker Signature of SARS-CoV-2 Infection. Anal Chem. 2021 Mar 2;93(8):3976-3986. https://doi.org/10.1021/acs.analchem.0c04952.

Lodge S. et al. NMR Spectroscopic Windows on the Systemic Effects of SARS-CoV-2 Infection on Plasma Lipoproteins and Metabolites in Relation to Circulating Cytokines. J. Proteome Res. 2021 Jan https://doi.org/10.1021/acs.jproteome.0c00876.

Lodge S, et al. Low Volume in Vitro Diagnostic Proton NMR Spectroscopy of Human Blood Plasma for Lipoprotein and Metabolite Analysis: Application to SARS-CoV-2 Biomarkers. J Proteome Res. 2021 Jan 23. https://doi.org/10.1021/acs.jproteome.0c00815.

Kimhofer T. et al. Integrative Modeling of Quantitative Plasma Lipoprotein, Metabolic, and Amino Acid Data Reveals a Multiorgan Pathological Signature of SARS-CoV-2 Infection. Journal of proteome research, 2020: 19, 4442-4454. https://doi.org/10.1021/acs.jproteome.0c00519

Loo RL. et al. Quantitative In-Vitro Diagnostic NMR Spectroscopy for Lipoprotein and Metabolite Measurements in Plasma and Serum: Recommendations for Analytical Artifact Minimization with Special Reference to COVID-19/SARS-CoV-2 Samples. Journal of proteome research, 2020; 19, 4428-4441. https://doi.org/10.1021/acs.jproteome.0c00537

NMR Spectroscopy Methods

Garcia Perez I. et al. Identifying unknown metabolites using NMR-based metabolic profiling techniques. Nature protocols, 2020; 15, 2538-2567. https://doi.org/10.1038/s41596-020-0343-3

Vonhof EV. Et al. Improved Spatial Resolution of Metabolites in Tissue Biopsies Using High-Resolution Magic-Angle-Spinning Slice Localization NMR Spectroscopy. Analytical chemistry, 2020; 92, 11516-11519. https://doi.org/10.1021/acs.analchem.0c02377

Loo RL. et al. A feasibility study of metabolic phenotyping of dried blood spot specimens in rural Chinese women exposed to household air pollution. J Expo Sci Environ Epidemiol. 2020; https://doi.org/10.1038/s41370-020-0252-0

Mass Spectrometry Methods

Barbas-Bernardos, C. et al. Development and validation of a high performance liquid chromatography-tandem mass spectrometry method for the absolute analysis of 17 alpha D-amino acids in cooked meals. Journal of chromatography A, 2020; 1611: 460598. https://doi.org/10.1016/j.chroma.2019.460598

Letertre M. et al. Metabolic Phenotyping Using UPLC–MS and Rapid Microbore UPLC–IM–MS: Determination of the Effect of Different Dietary Regimes on the Urinary Metabolome of the Rat. Chromatographia, 2020;  83, 853–861. https://doi.org/10.1007/s10337-020-03900-4

Whiley L, et al. Ultrahigh-Performance Liquid Chromatography Tandem Mass Spectrometry with Electrospray Ionization Quantification of Tryptophan Metabolites and Markers of Gut Health in Serum and Plasma-Application to Clinical and Epidemiology Cohorts. Anal Chem. 2019; 91(8):5207-5216. https://doi.org/10.1021/acs.analchem.8b05884

Barbas-Bernardos C, et al. Development and validation of a high performance liquid chromatography-tandem mass spectrometry method for the absolute analysis of 17 α D-amino acids in cooked meals. J Chromatogr A. 2019: 1611, 460598. https://doi.org/10.1016/j.chroma.2019.460598

Nye LC, et al. A comparison of collision cross section values obtained via travelling wave ion mobility-mass spectrometry and ultra high performance liquid chromatography-ion mobility-mass spectrometry J Chromatogr A. 2019; 1602:386-396. https://doi.org/10.1016/j.chroma.2019.06.056

Gray N, et al. A validated UPLC-MS/MS assay for the quantification of amino acids and biogenicamines in rat urine. J Chromatogr B Analyt Technol Biomed Life Sci. 2019 Feb 1;1106-1107:50-57. https://doi.org/10.1016/j.jchromb.2018.12.028

King AM, et al Rapid profiling method for the analysis of lipids in human plasma using ion mobility enabled-reversed phase-ultra high performance liquid chromatography/ mass spectrometry. J Chromatogr A. 2020, 1611; 460597. https://doi.org/10.1016/j.chroma.2019.460597


Loo RL. et al. Strategy for improved characterisation of human metabolic phenotypes using a COmbined Multiblock Principal components Analysis with Statistical Spectroscopy (COMPASS). Bioinformatics, 2020. 1-8. https://doi.org/10.1093/bioinformatics/btaa649


Atanasova P, Kusuma D, Pineda E, Anjana RM, De Silva L, Hanif AAM, Hasan M, Hossain MM, Indrawansa S, Jayamanne D, Jha S, Kasturiratne A, Katulanda P, Khawaja KI, Kumarendran B, Mrida MK, Rajakaruna V, Chambers JC, Frost G, Sassi F, Miraldo M. (2022) Food environments and obesity: A geospatial analysis of the South Asia Biobank, income and sex inequalities. SSM Popul Health 17 101055. https://doi: 10.1016/j.ssmph.2022.101055

Garcia Perez I et al. Dietary metabotype modelling predicts individual responses to dietary interventions. Nat Food 2020; 1, 355–364. https://doi.org/10.1038/s43016-020-0092-z

Posma JM. Et al. Nutriome-metabolome relationships provide insights into dietary intake and metabolism. Nature food, 2020; 1, 426-436. https://doi.org/10.1038/s43016-020-0093-y

Petropoulou K. et al. A natural mutation in Pisum sativum L. (pea) alters starch assembly and improves glucose homeostasis in humans. Nat Food, 2020; 1, 693–704. https://doi.org/10.1038/s43016-020-00159-8

Eriksen R. et al. Dietary metabolite profiling brings new insight into the relationship between nutrition and metabolic risk: An IMI DIRECT study. EBioMedicine, 2020; 58, 102932. https://doi.org/10.1016/j.ebiom.2020.102932

Gibson R, et al The association of fish consumption and its urinary metabolites with cardiovascular risk factors. Am J Clin Nutr. 2019, 111, 280-290. https://doi.org/10.1093/ajcn/nqz293

Byrne CS, et al. Effects of Inulin Propionate Ester Incorporated into Palatable Food Products on Appetite and Resting Energy Expenditure: A Randomised Crossover Study. Nutrients. 2019; 11(4). pii: E861. https://doi.org/10.3390/nu11040861


Fiamoncini J, Donado-Pestana CM, Duarte GBS, Rundle M, Thomas EL, Kiselova-Kaneva Y, Gundersen TE, Bunzel D, Trezzi JP, Kulling SE, Hiller K, Sonntag D, Ivanova D, Brennan L, Wopereis S, van Ommen B, Frost G, Bell J, Drevon CA, Daniel H. (2022) Plasma Metabolic Signatures of Healthy Overweight Subjects Challenged With an Oral Glucose Tolerance Test Front Nutr 9 898782 https://doi.org/10.3389/fnut.2022.898782.

West KA et al. Longitudinal metabolic and gut bacterial profiling of pregnant women with previous bariatric surgery. Gut, 2020; 69, 1452-1459. https://doi.org/10.1136/gutjnl-2019-319620

Ding NS. Et al. Metabonomics and the Gut Microbiome Associated With Primary Response to Anti-TNF Therapy in Crohn’s Disease. Journal of Crohn’s & colitis, 2020; 14, 1090-1102. https://doi.org/10.1093/ecco-jcc/jjaa039

Letertre MPM. Et al. A Two-Way Interaction between Methotrexate and the Gut Microbiota of Male Sprague-Dawley Rats. J Proteome Res, 2020; 19, 3326-3339. https://doi.org/10.1021/acs.jproteome.0c00230

Martinez-Gili L. et al. Understanding the mechanisms of efficacy of fecal microbiota transplant in treating recurrent Clostridioides difficile infection and beyond: the contribution of gut microbial-derived metabolites. Gut microbes, 2020; 12, 1810531. https://doi.org/10.1080/19490976.2020.1810531

Kundu P, et al. Neurogenesis and prolongevity signaling in young germ-free mice transplanted with the gut microbiota of old mice. Sci Transl Med. 2019; 11(518). pii: eaau4760. https://doi.org/10.1126/scitranslmed.aau4760

James K, et al. Metabolism of the predominant human milk oligosaccharide fucosyllactose by an infant gut commensal. Sci Rep. 2019; 9(1):15427. https://doi.org/10.1038/s41598-019-51901-7

Lahiri S, et al. The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med. 2019 Jul 24;11(502). pii: eaan5662. https://doi.org/10.1126/scitranslmed.aan5662

Barton W. et al. The effects of sustained fitness improvement on the gut microbiome: A longitudinal, repeated measures case-study approach. medRxiv 2020.06.04.20046292. https://doi.org/10.1002/tsm2.215

Cardiometabolic Disease

Lau, CHE. Et al. Metabolic Signatures of Gestational Weight Gain and Postpartum Weight Loss in a Lifestyle Intervention Study of Overweight and Obese Women. Metabolites, 2020; 10(12), 498. https://doi.org/10.3390/metabo10120498

Gray N. et al. UHPLC-MS-Based Lipidomic and Metabonomic Investigation of the Metabolic Phenotypes of Wild Type and Hepatic CYP Reductase Null (HRN) Mice. J Pharm Biomed Anal, 2020; 186, 113318. https://doi.org/10.1016/j.jpba.2020.113318

Onida S, et al. Metabolic Phenotyping in Venous Disease: The Need for Standardization. J Proteome Res. 2019 Nov 1;18(11):3809-3820. https://doi.org/10.1021/acs.jproteome.9b00460

Brial F, et al. Systems Genetics of Hepatic Metabolome Reveals Octopamine as a Target for Non-Alcoholic Fatty Liver Disease Treatment. Sci Rep. 2019; 9(1):3656. https://doi.org/10.1038/s41598-019-40153-0

West K, et al. Longitudinal metabolic and gut bacterial profiling of pregnant women with previous bariatric surgery. Gut 2019; 69:1452-1459. https://doi.org/10.1136/gutjnl-2019-319620


Jiménez B, et al.  Neuroendocrine Neoplasms: Identification of Novel Metabolic Circuits of Potential Diagnostic Utility.Cancers (Basel). 2021; 13(3):E374. https://doi.org/10.3390/cancers13030374.

Koundouros N. et al. Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids. Cell, 2020; 181, 1596-1611 e27. https://doi.org/10.1016/j.cell.2020.05.053

Ocvirk S. et al. A prospective cohort analysis of gut microbial co-metabolism in Alaska Native and rural African people at high and low risk of colorectal cancer. Am J Clin Nutr, 2020; 111, 406-419. https://doi.org/10.1093/ajcn/nqz301

Dumennci OE, et al. Exploring Metabolic Consequences of CPS1 and CAD Dysregulation in Hepatocellular Carcinoma by Network Reconstruction. Journal of hepatocellular carcinoma, 2020; 7, 1-9. https://doi.org/10.2147/JHC.S239039

Seow WJ, et al. Association of Untargeted Urinary Metabolomics and Lung Cancer Risk Among Never-Smoking Women in China. JAMA Netw Open. 2019 Sep 4;2(9):e1911970. https://doi.org/10.1001/jamanetworkopen.2019.11970


Whiley L, et al. Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer’s disease. Alzheimers Res Ther. 2021; 13(1):20. https://doi.org/10.1186/s13195-020-00741-z.

Kurbatova N. et al. Urinary metabolic phenotyping for Alzheimer’s disease. Scientific reports, 2020; 10, 21745. https://doi.org/10.1038/s41598-020-78031-9

Gastrointestinal Diseases

Gallagher K. et al. Metabolomic Analysis in Inflammatory Bowel Disease: A Systematic Review. Journal of Crohn’s & colitis. 2020; https://doi.org/10.1093/ecco-jcc/jjaa227